
Translation tips 1

How to translate VisualPlace

The international language support in VisualPlace is based on the ʻRosetteʼ library. Rosette is a library
that provides localization and internationalization support to applications via message catalogs. To-
gether with the library, Rosette comes with a set of tools to aid translators in maintaining and verifying
the catalogs with translations.

There are three sections in this guide. It starts with instructions for translation without any additional
tools (except for a plain text editor, but your operating system is guaranteed to come with a suitable
one). For translators, there are environments that are more efficient —the second section covers how
the Rosette catalog can be converted to and from the formats used by these special environments. The
third section contains general remarks that apply to both ways of working.

With no help

A Rosette catalog contains the translations for all languages in a single file. It is called the ʻcatalogʼ and
it is a text file. It can be edited with a plain text editor, such as Notepad. Obviously, we advise you to use
a more powerful text editor, but if Notepad is all that you have, it is suitable.

The catalog text file should be stored in the UTF-8 encoding (not the 16-bit ʻUnicodeʼ encoding). ASCII
is fully compatible with UTF-8, but most languages require characters outside the ASCII range.

A translation block starts with a line in the ʻkey languageʼ (for VisualPlace, this is English), followed by
a list of translations in other languages. All languages are indicated by a ʻlanguage code .̓ This is a two-
letter code, typically from the ISO 639-1 list. Examples are ʻenʼ for English, ʻnlʼ for Dutch, ʻfrʼ for French,
etc. Rosette does not require you to adhere to the ISO 639-1 list; it only requires that each code uniquely
identifies a language.

Each message must be contained on a single line (or row). To break the line, insert the ʻ\nʼ character
pair at the location where the breakmust occur. If a backslash appears in the text, you should double it.
This is called escaping a backslash in Rosette. The most common special characters in Rosette are:

Special characters (escape characters)

\n A line break (ʻnewlineʼ)
\r A carriage return
\t A TAB character
\" A double-quote character
\$ The dollar character (ʻ$ʼ)
\\ The backslash character itself (ʻ\ʼ)
\ddd A character code of 1 to 5 digits; the code must be in decimal
\xdd A character code of 1 to 4 digits; the code must be in hexadecimal

For example, to force a line break after ʻjumpsʼ in the text
the quick brown fox jumps
over the lazy dog

use:

en: the quick brown fox jumps\nover the lazy dog

2 Translation tips

The ʻ\$ʼ escape code is only needed if a ʻ$ʼ appears at the beginning of amessage (so immediately follow-
ing the colon behind the language code). If a ʻ$ʼ appears somewhere in the middle of a message, there
is no need to escape it. A ʻ$ʼ at the beginning of a message indicates a ʻmessage tag ,̓ see page 6.

Double quotes do not need to be escaped. The \" escape code ismerely supported for conveniencewhen
using the C/C++ language (or similar), where double quotes in strings must be escaped.

If a message is formulated differently depending on whether there are ʻplural forms ,̓ you give both the
ʻgeneralʼ message and the exceptions —the exceptions have a count in square brackets behind the lan-
guage code. For European languages, the general message is usually the plural form and the exception is
the singular form.
Plural forms

en : %1d records are found
en[1] : %1d record is found
de : %1d Datensätze sind gefunden
de[1] : %1d Datensatz ist gefunden
fr : %1d lignes sont trouvées
fr[0,1]: %1d ligne est trouvée

In the example above, the strings that start with ʻenʼ and ʻfrʼ are the general messages. These will be
used if no other stringmatches. If the count is 1, however, the strings startingwith ʻen[1]ʼ and ʻfr[0,1]ʼ
are selected.

There is no need to specify the same plural forms for all messages; in this instance, there are exceptions
for the counts 0 and 1 in French, but only for 1 in English and German. The reason for the extra ʻplural
formʼ in French is that for a count of zero, you have to use the singular form, whereas English uses the
plural form for zero. Thus, if the count is 0, for English the general message is selected, whilst the string
starting with ʻfr[0,1]ʼ is picked for French.

With some help
There exist various programs that are specifically designed for translating text. However, only very few
are suitable for translating the strings in software products —mainly because of a lack of consensus on
how internationalizing of software should be done.

There are no knownComputer Aided Translations (CAT) tools thatwork directly onRosette catalogs. You
can use CAT tools, however, by first exporting part of the catalog in a new format, and importing it back
into the catalog after translation. Rosette provides tools to perform the export, import and verification
operations—and the essential tools are now freely available. These tools are available both as command
line utilities, and as a windowed utility. This document only covers the windowed utility.

The windowed utility has four buttons for the main operations: opening a Rosette catalog, exporting
a single translation (or template for translation) from that catalog in a selected format, importing a
translated partial catalog/message file, and closing the utility.

Before starting, it is always a good idea to ensure that you have a backup of the original catalog, and of
any other files that you work on. Since Rosette catalogs (and intermediate files that it uses) are all plain
text files, a better idea is to use a version control system.

After opening a catalog, the utility shows some statistics about the catalog, among which the currently
supported languages (the languages that are already in the catalog) and the key language.

When exporting a file, the utility shows a dialog where you need to set two options: the format for the
output file and the language to export. The format depends on the translation editor (CAT tool) that you
will use (more on this below). The language to export can either be one of the languages that are already
in the catalog or, more likely, a new language. To export a new language, you need to type in the two

Translation tips 3

FIGURE 1: The Rosette export/import utility

letter code for the language. So for example, if you wish to make a translation for Spanish, you would
specify ʻesʼ as the language to export.

When importing a translated file back into the catalog, no options need to be set. The Rosette utility
detects the appropriate parameters.

Below are three example scenarios for translating Rosette catalogs: with a PO editor, an XLIFF-based
CAT tool, and using Google s̓ on-line ʻTranslator Toolkit .̓

Using a PO editor

gettext is a library and toolkit for internationalizing software (the license restricts its use to ʻopen-sourceʼ
programs). A few programs exist to edit the translation files used by gettext. These files are called ʻPOʼ
files, software to edit PO files are ʻPO editors .̓

A difference with Rosette catalogs is that a PO file contains a translation for only one language, whereas
a catalog contains the translations for all supported languages. Therefore, a single language must be
extracted from the catalog, before starting the translation.

With gettext, it is common practice to use the language code as the filename, with extension ʻ.poʼ (for
example ʻfr.poʼ or ʻen-GB.poʼ). For the Rosette ʻimportʼ functionality, this naming convention ismanda-
tory, as the PO format does not have a header or message fields that encode the key and/or target lan-
guages.

When adding a translation for a new language, you have to type in the letter code for the new language
and choose the format ʻPO .̓ The export operation now creates a file with only the strings in the key
language and empty translations. In gettext terminology, this is a PO Template, or ʻPOTʼ file. Rosette
does not make the distinction between PO and POT files —a POT file is just a PO file that happens to
contain zero translated strings.1

Issues like ʻescapingʼ characters and handling plural forms (see the previous section) are often handled
by the PO editor and/or the conversion tools. However, a literal ʻ$ʼ at the start of message may still need
to be escaped to avoid it being mistaken as a message tag (see page 6).

1 gettext makes this distinction because its ʻxgettextʼ utility always creates an ʻemptyʼ POT file that contains only the mes-
sages in the key language (and translators then use ʻmsginitʼ to merge previously made translations to thus create a PO file.
Rosette s̓ rsexport utility, the equivalent of ʻxgettext ,̓ extracts existing translated messages into the PO file. Therefore, what
you send to the translators already contains the translations from previous versions.

4 Translation tips

FIGURE 2: Export language with a different language code

Some PO editors offer automatic conversion (or compilation) to ʻMOʼ format. This is not needed and not
useful for Rosette. The MO format is a binary representation of the PO format —and it is incompatible
with Rosette s̓ binary format.

Using an XLIFF editor

The XLIFF format is an XML-based file format for translating general purpose texts. It is supported by
several CAT tools and editors. Although not specifically designed for software translation, in practice it
works well.

A popular and freely available CAT editor that supports XLIFF is OmegaT. It is used as an example in this
section. Other XLIFF-capable editors have similar capabilities.

Although the XLIFF format can technically support multiple translated languages in the same file (in
addition to the key language), the specification recommends that each file only contains a single trans-
lation.

An XLIFF file maps strings from a source language to a target language. When OmegaT imports an
XLIFF file, it uses the ʻsourceʼ string solely as a match target and it presents only the ʻtargetʼ strings to
the translator. You should therefore always extract the language that you wish to translate from into an
XLIFF file (usually this is the key language). See also figure 2, in which the language that is exported is
en-GB but the XLIFF will record it as fr-FR. It is furthermore advised to append the two-letter language
code of the intended target language to the filename, separating it from the base name with a dash. For
example, when the catalog ʻmyproductʼ must be translated from English to German (via XLIFF), extract
the language ʻenʼ into a file called ʻmyproduct-de.xliff .̓

The resulting XLIFF file will have the source and target strings both set to the key language. OmegaT
will then present the ʻtargetʼ strings (in the key language) for translation to the real target language.

An XLIFF file records both the ʻsourceʼ and ʻtargetʼ languages in a header of the file. However, following
the above procedure, these are both set to the key language. OmegaT does not modify the header when
writing the output XLIFF file, thereby making the language codes in the XLIFF header unreliable. This
is why it is advised to record the target language code in the filename. When using the command line
utility rsimport, the target language code of an XLIFF file should be specified on the command line (even
though the documentation states that language codes are optional for XLIFF files2).

A limitation of the XLIFF format is that there is no inherent support for plural forms. The convention
suggested by OASIS (the organization maintaining the XLIFF standard) is that a messages and its plural
forms are grouped (the XLIFF standard describes a general purpose ʻgroupʼ tag) and to add the plural
count between square brackets to the ʻidʼ of the translation unit. For example, a message with plural
forms is grouped like:

2 Language codes are optional if they are correctly recorded in the XLIFF file. When the XLIFF header is incorrect or unreli-
able (or absent), language codes should be explicitly given.

Translation tips 5

<group restype="rosette-plurals">
<trans-unit id="37867a22">

<source>The following %{number:d} components are deleted: %{list}</source>
<target>Les %{number:d} composants suivants seront supprimés : %{list}</target>

</trans-unit>
<trans-unit id="37867a22[1]">

<source>The following component is deleted: %{list}</source>
<target>Le composant suivant sera supprimé : %{list}</target>

</trans-unit>
</group>

OmegaT ignores the grouping and presents both strings individually. The group specifcation is used by
the Rosette tools to correctly import a translated XLIFF file into a catalog.

Using Google Translator Toolkit

Google provides a ʻTranslator Toolkitʼ for translating texts or web pages —an on-line service that com-
bines computer translations and translation memory. The Translator Toolkit uses a side-by-side editor
for the original and translated texts. The editor requires that the source file contains strings in only a
single language; the output file will also contain only a single language (i.e. the translation). These two
files (source and output) are synchronized internally in the Translator Toolkit.

To use Google s̓ Translator Toolkit with Rosette, the first step is to export the key language to a temporary
file. This file is then uploaded to the Translator Toolkit and translated. The output from the translation
can be imported back into the catalog.

To export the temporary file, choose the key language as the language to export and the ʻHASHʼ format.
This will give you a file with messages in the key language (usually English), where eachmessage is pre-
ceded by an eight-digit hexadecimal code —the hash. This is the file that you will upload and translate.

After uploading, in the left panel of the editor of the Translator Toolkit, you will see lines with:
#127FA68E
en: This is not a pipe

In the right panel, there are the same strings, already machine translated into the target language. If
the target language is French, the string might be:

#127FA68E
en: Ce n'est pas une pipe

You can correct ʻCeʼ into ʻCeci .̓ With a global search & replace operation, you should also replace all
occurrences of ʻen:ʼ to ʻfr: .̓ The comment with the hash code (#) should not be altered or removed; this
code is required to to merge the translated file back. The corrected snippet is:

#127FA68E
fr: Ceci n'est pas une pipe

General remarks
After adding your translations, you can test the results immediately by launchingVisualPlace and choos-
ing your language. Strings that you have not yet translatedwill appear in the key language (e.g. English).3

A catalog provided with VisualPlace already contains a few translations. When starting a translation,
you can learn by example, by looking how the existing translations handled things. Some background
information, including tips and examples, can be found in a freely available white paper on Rosette,
which you can find on the CompuPhase web site.4

3 However, when importing translations from a PO editor, you may be required to complete the translation before Rosette is
able to import it —some PO editors create empty translations for any message that is not yet handled.

4 Rosette — Internationalization through message catalogs, available on the CompuPhase web site.

6 Translation tips

Placeholders

The text strings may contain placeholders for values, amounts or names. These placeholders have one
of the forms:
⋄ Numbered placeholders start with a percentage sign (ʻ%ʼ) followed by a number, a letter, or both a
number and a letter.

⋄ Labeled placeholders start with a percentage sign (ʻ%ʼ) followed by a label in curly braces (ʻ{. . . }ʼ).
Type and format flags may follow the label, after a colon.

At run-time, the application replaces the placeholders by actual data, such as a name, a file path, or a
number. When translatingmessages, you should copy the placeholders as they are. Notably, for labeled
placeholders, you should not translate the label. In the translated messages, you may rearrange the
placeholders in the text —that is, placeholder ʻ%2sʼ may come before ʻ%1s .̓

If a message string contains a double percentage sign, ʻ%%,̓ it should be copied to the translations as is.
The double percentage is translated to a single percentage symbol. This would only occur in messages
that contain placeholders.

Message tags

Rosette knows a concept of ʻtaggingʼ a message for either specifying a context for the message, or for
selecting a message by a label instead of by the text of the key language.

A ʻtagʼ must be placed in front of themessage. It starts with a ʻ$ʼ symbol, and a label follows. The label is
a name; itmay contain digits, underscores and dashes, but no punctuation or spaces. The first character
(directly after the $) must be a letter.

In translations, the tag should be copied verbatim; it should not be translated.

Themessages andmenu text

All messages, menus and dialog texts are in the file ʻVisualPlace.cat .̓ This file is in the ʻdocʼ subdirec-
tory below where VisualPlace is installed.

It is common that there is a message in the file that starts with the keyword ʻ$Languages .̓ It is also com-
mon that this message is at the top of the catalog. The ʻ$Languagesʼ keyword is a tag, see the previous
section. When adding a new language to the catalog, you should add its name and ISO code to this list.
The ISO labguage code (between parentheses) may be a two-letter code, such as ʻfrʼ or a combination of
language and country codes, such as ʻfr-CA̓.

For example, if a catalog already contains English andGerman, and youwish to add aFrench translation,
the original catalog will contain:

en: $Languages English (en); Deutsch (de)
de: *

You then adjust this to:
en: $Languages English (en); Deutsch (de); Français (fr)
de: *
fr: *

The reason for the lines ʻde: *ʼ and ʻfr: *ʼ is that for this particular message, VisualPlace will only
use the message in the key language. There should be strings present for the other languages as well
(to avoid warning messages from Rosette), but their contents are never used. It has therefore become
common practice to translate this particular message to a ʻ* .̓

For all other messages in the file, you should add another message in the new language. The language
code for the new language must be the same as the one that you gave at the $Languages list.

Translation tips 7

Never change the string in the key language (ʻenʼ).

Apart from the escape characters described on page 1, the strings describing menu items and buttons
for the user interface may contain a ʻ&ʼ prefixed to the word or even in the middle of the word. This
& character serves to indicate the shortcut letter. In the translation, there should preferably also be a
shortcut letter, but it does not need to be on the same letter. For standard menu items and dialog fields,
youmay look at how other applications define the shortcuts, for application-specificmenu items/fields,
you can choose any letter that does not cause conflicts with other items/fields. If no suitable letter can
be found, you can leave the shortcut out of the translation.

The tooltip help

Short help for each field in a dialog is provided via a call-out (or balloon). The texts in these call-outs
comes from the file ʻVisualPlace.tips .̓ This file is in the ʻdocʼ subdirectory below where VisualPlace
is installed.

The format of this file is different from the ʻVisualPlace.catʼ file in various respects:

⋄ The ʻkey languageʼ is not ʻen,̓ but ʻ00ʼ and the key that follows is a number instead of a string. You
should not change this number.

⋄ Some HTML commands may be used for formatting, specifically ʻ<p> ,̓ ʻ
 ,̓
ʻʼ. . . ʻ ,̓ ʻ<i>ʼ. . . ʻ</i>ʼ and ʻ<u>ʼ. . . ʻ</u> .̓ The code used to display these help texts is based on
the ʻDrawHTMLʼ function; for more information, see
https://www.compuphase.com/drawhtml.htm.

Resources and references

The Rosette conversion tools are available from the CompuPhase site. The direct link is
https://www.compuphase.com/software rosette.htm.
This page also contains a white paper on Rosette, with more details on the catalog format.

	How to translate VisualPlace
	With no help
	With some help
	Using a PO editor
	Using an XLIFF editor
	Using Google Translator Toolkit

	General remarks
	Placeholders
	Message tags
	The messages and menu text
	The tooltip help
	Resources and references

